## Midterm Exam Practise Paper

1 Solve the inequality $2-3 x<|x-3|$.

2 The polynomial $2 x^{3}+a x^{2}-4$ is denoted by $\mathrm{p}(x)$. It is given that $(x-2)$ is a factor of $\mathrm{p}(x)$.
(i) Find the value of $a$.

When $a$ has this value,
(ii) factorise $\mathrm{p}(x)$,
(iii) solve the inequality $\mathrm{p}(x)>0$, justifying your answer.

3 When $(1+2 x)(1+a x)^{\frac{2}{3}}$, where $a$ is a constant, is expanded in ascending powers of $x$, the coefficient of the term in $x$ is zero.
(i) Find the value of $a$.
(ii) When $a$ has this value, find the term in $x^{3}$ in the expansion of $(1+2 x)(1+a x)^{\frac{2}{3}}$, simplifying the coefficient.

4 (i) Express $\frac{2-x+8 x^{2}}{(1-x)(1+2 x)(2+x)}$ in partial fractions.
(ii) Hence obtain the expansion of $\frac{2-x+8 x^{2}}{(1-x)(1+2 x)(2+x)}$ in ascending powers of $x$, up to and including the term in $x^{2}$.

5 The polynomial $a x^{3}+b x^{2}+5 x-2$, where $a$ and $b$ are constants, is denoted by $\mathrm{p}(x)$. It is given that $(2 x-1)$ is a factor of $\mathrm{p}(x)$ and that when $\mathrm{p}(x)$ is divided by $(x-2)$ the remainder is 12 .
(i) Find the values of $a$ and $b$.
(ii) When $a$ and $b$ have these values, find the quadratic factor of $\mathrm{p}(x)$.

6 The polynomial $\mathrm{p}(x)$ is defined by

$$
\mathrm{p}(x)=a x^{3}-x^{2}+4 x-a
$$

where $a$ is a constant. It is given that $(2 x-1)$ is a factor of $\mathrm{p}(x)$.
(i) Find the value of $a$ and hence factorise $\mathrm{p}(x)$.
(ii) When $a$ has the value found in part (i), express $\frac{8 x-13}{\mathrm{p}(x)}$ in partial fractions.

7 Expand $\frac{1}{(2+x)^{3}}$ in ascending powers of $x$, up to and including the term in $x^{2}$, simplifying the coefficients.

8 Solve the equation

$$
5^{x-1}=5^{x}-5
$$

giving your answer correct to 3 significant figures.

9 The variables $x$ and $y$ satisfy the equation $y^{3}=A \mathrm{e}^{2 x}$, where $A$ is a constant. The graph of $\ln y$ against $x$ is a straight line.
(i) Find the gradient of this line.
(ii) Given that the line intersects the axis of $\ln y$ at the point where $\ln y=0.5$, find the value of $A$ correct to 2 decimal places.

10 Solve the equation $\ln \left(2+\mathrm{e}^{-x}\right)=2$, giving your answer correct to 2 decimal places.

11 It is given that $\tan 3 x=k \tan x$, where $k$ is a constant and $\tan x \neq 0$.
(i) By first expanding $\tan (2 x+x)$, show that

$$
\begin{equation*}
(3 k-1) \tan ^{2} x=k-3 . \tag{4}
\end{equation*}
$$

(ii) Hence solve the equation $\tan 3 x=k \tan x$ when $k=4$, giving all solutions in the interval $0^{\circ}<x<180^{\circ}$.
(iii) Show that the equation $\tan 3 x=k \tan x$ has no root in the interval $0^{\circ}<x<180^{\circ}$ when $k=2$. [1]

12 (i) By first expanding $\sin (2 \theta+\theta)$, show that

$$
\begin{equation*}
\sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta . \tag{4}
\end{equation*}
$$

(ii) Show that, after making the substitution $x=\frac{2 \sin \theta}{\sqrt{3}}$, the equation $x^{3}-x+\frac{1}{6} \sqrt{ } 3=0$ can be written in the form $\sin 3 \theta=\frac{3}{4}$.
(iii) Hence solve the equation

$$
x^{3}-x+\frac{1}{6} \sqrt{3}=0,
$$

giving your answers correct to 3 significant figures.

13 The angles $A$ and $B$ are such that

$$
\sin \left(A+45^{\circ}\right)=(2 \sqrt{ } 2) \cos A \quad \text { and } \quad 4 \sec ^{2} B+5=12 \tan B
$$

Without using a calculator, find the exact value of $\tan (A-B)$.

14 Prove the identity

$$
\cot x-\cot 2 x \equiv \operatorname{cosec} 2 x
$$

15 Solve the equation

$$
\cos \theta+3 \cos 2 \theta=2
$$

giving all solutions in the interval $0^{\circ} \leqslant \theta \leqslant 180^{\circ}$.

16 (i) Express $7 \cos \theta+24 \sin \theta$ in the form $R \cos (\theta-\alpha)$, where $R>0$ and $0^{\circ}<\alpha<90^{\circ}$, giving the exact value of $R$ and the value of $\alpha$ correct to 2 decimal places.
(ii) Hence solve the equation

$$
7 \cos \theta+24 \sin \theta=15
$$

giving all solutions in the interval $0^{\circ} \leqslant \theta \leqslant 360^{\circ}$.

